Assessment of the accuracy of matrix representation with parsimony analysis supertree construction.

نویسندگان

  • O R Bininda-Emonds
  • M J Sanderson
چکیده

Despite the growing popularity of supertree construction for combining phylogenetic information to produce more inclusive phylogenies, large-scale performance testing of this method has not been done. Through simulation, we tested the accuracy of the most widely used supertree method, matrix representation with parsimony analysis (MRP), with respect to a (maximum parsimony) total evidence solution and a known model tree. When source trees overlap completely, MRP provided a reasonable approximation of the total evidence tree; agreement was usually > 85%. Performance improved slightly when using smaller, more numerous, or more congruent source trees, and especially when elements were weighted in proportion to the bootstrap frequencies of the nodes they represented on each source tree ("weighted MRP"). Although total evidence always estimated the model tree slightly better than nonweighted MRP methods, weighted MRP in turn usually out-performed total evidence slightly. When source studies were even moderately nonoverlapping (i.e., sharing only three-quarters of the taxa), the high proportion of missing data caused a loss in resolution that severely degraded the performance for all methods, including total evidence. In such cases, even combining more trees, which had positive effects elsewhere, did not improve accuracy. Instead, "seeding" the supertree or total evidence analyses with a single largely complete study improved performance substantially. This finding could be an important strategy for any studies that seek to combine phylogenetic information. Overall, our results suggest that MRP supertree construction provides a reasonable approximation of a total evidence solution and that weighted MRP should be used whenever possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Supertree Methods Revisited

Supertree methods allow to reconstruct large phylogenetic trees by combining smaller trees with overlapping leaf sets into one, more comprehensive supertree. The most commonly used supertree method, matrix representation with parsimony (MRP), produces accurate supertrees but is rather slow due to the underlying hard optimization problem. In this paper, we present an extensive simulation study c...

متن کامل

Performance of Supertree Methods on Various Dataset Decompositions

Many large-scale phylogenetic reconstruction methods attempt to solve hard optimization problems (such as Maximum Parsimony (MP) and Maximum Likelihood (ML)), but they are limited severely by the number of taxa that they can handle in a reasonable time frame. A standard heuristic approach to this problem is the divide-and-conquer strategy: decompose the dataset into smaller subsets, solve the s...

متن کامل

Bad Clade Deletion Supertrees: A Fast and Accurate Supertree Algorithm

Supertree methods merge a set of overlapping phylogenetic trees into a supertree containing all taxa of the input trees. The challenge in supertree reconstruction is the way of dealing with conflicting information in the input trees. Many different algorithms for different objective functions have been suggested to resolve these conflicts. In particular, there exist methods based on encoding th...

متن کامل

Submitted 05.09.03 PERFORMANCE OF FLIP-SUPERTREE HEURISTIC Performance of Flip-Supertree Construction with a Heuristic Algorithm

Supertree methods assemble separate phylogenetic trees with shared taxa into larger trees, or supertrees, in an effort to construct more comprehensive phylogenetic hypotheses. In spite of much recent interest in supertrees, there are still few methods for supertree construction. The flip supertree problem is an error correction approach that seeks to find a minimum number of changes, or "flips"...

متن کامل

Supertree Methods for Ancestral Divergence Dates and Other Applications

There are many ways to combine rooted phylogenetic trees with overlapping leaf sets into a single “supertree”. The most widely used method is MRP (matrix representation with parsimony analysis), but other direct methods have been developed recently. However, all these methods utilize typically only the discrete topology of the input trees and ignore other information that might be available. Ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Systematic biology

دوره 50 4  شماره 

صفحات  -

تاریخ انتشار 2001